Quantum field theory on quantized Bergman domain

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized Kronecker flows and almost periodic quantum field theory

We define and study the properties of the infinite dimensional quantized Kronecker flow. This C-dynamical system arises as a quantization of the corresponding flow on an infinite dimensional torus. We prove an ergodic theorem for a class of quantized Kronecker flows. We also study the closely related almost periodic quantum field theory of bosonic, fermionic and supersymmetric particles. We pro...

متن کامل

Combinatorial algebra for second-quantized Quantum Theory

We describe an algebra G of diagrams that faithfully gives a diagrammatic representation of the structures of both the Heisenberg–Weyl algebra H – the associative algebra of the creation and annihilation operators of quantum mechanics – and U(LH), the enveloping algebra of the Heisenberg Lie algebra LH. We show explicitly how G may be endowed with the structure of a Hopf algebra, which is also ...

متن کامل

Notes on Quantum Field Theory

UCSB Notes for the first quarter of a QFT course, based mostly on ϕ 3 theory in six dimensions. Please send any comments or corrections to

متن کامل

Conformal Field Theory on R× S from Quantized Gravity

Conformal algebra on R × S derived from quantized gravitational fields is examined. The model we study is a renormalizable quantum theory of gravity in four dimensions described by a combined system of the Weyl action for the traceless tensor mode and the induced Wess-Zumino action managing non-perturbative dynamics of the conformal factor in the metric field. It is shown that the residual diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2012

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.3673274